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ABSTRACT

A high-resolution, multi-level, primitive equation ocean model is used to examine the response

of an idealized, flat-bottomed, eastern boundary oceanic regime on a beta-plane to both steady

and seasonally-varying climatological wind forcing. The focus of the study is the California

Current System along the coastal region, from 350 N to 45' N, off the Western United States.

With steady equatorward wind forcing, a surface equatorward current and poleward undercurrent

develop. Eddies form around days 60 and 70 with initial development in the northern region of

the domain. The strong meandering current continues to grow throughout the 360 days of model

time and can produce eddies that have wavelengths up to - 200 km and can propagate at least

-200 km offshore. When the alongshore component of the temporally averaged seasonally-

varying climatological wind forcing is used, there is a weak poleward undercurrent and

equatorward surface current. There is weak upwelling and very little eddy activity with the eddies

only propagating to -100 km offshore. When alongshore component of the time-dependent wind

forcing with spatial variability in latitude is used, a surface equatorward jet, poleward

undercurrent and eddies are generated. The eddies form throughout the domain in this

experiment due to a competition between the O3-plane effect and the continuous and stronger

equatorward wind forcing in the southern portion of the domain. The eddies in this experiment

propagate at least -150 km from shore. When the full climatological winds are used, there is

again a surface equatorward jet and poleward undercurrent generated. The surface currents and

eddies reach speeds of -65-85 cm s-1. The wavelengths of the eddies are -300 km and can

propagate to -350 km offshore. These results are closest to the observed structure of the

California Current System. Therefore, I conclude that both temporal and spatial variability in

wind forcing are critical elements in the formation and maintenance of currents and eddies in the

California Current System.
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I. INTRODUCTION

The California Current System is a complex system of eddies and meandering jets

superimposed on a mean equatorward flow extending to -1000 km from the coast There

have been several major experiments including Coastal Upwelling Experiments (CUE-I

and CUE-il), Coastal Ocean Dynamics Experiment (CODE), Ocean Prediction through

Observations, Modeling and Analysis (OPTOMA), and Coastal Transition Zone (CTZ),

designed to better understand this eastern boundary current. The purpose of this study is

to explain the generation of the eddies and filaments found in the above experiments.

Batteen el al. (1989) demonstrated how a steady equatorward wind is able to generate a

reasonable current, undercurrent and eddy field with a full primitive equation (PE) model.

The process-oriented study described here extends the work of Batteen el al. (1989) by

using seasonal rather than steady winds to force the same PE model, These winds are

then averaged into different components to understand the role these components play in

the generation of mesoscale features.

This thesis is organized as follows. Chapter II describes the region being modeled

as well as the type of winds used to force the model. A brief look at some numerical

models used in the past is at the end of this chapter. In Chapter III there is a description

of the model and the design of the experiments. The results of the model experiments are

presented in Chapter IV. A summary is provided in Chapter V.



H. BACKGROUND

A. REGIONAL DESCRIPTION

Oceanic flow off California is classified as an eastern boundary current. It was

described as a broad, weak, equatorward flow extending to -1000 km from the coast

(Sverdrup et al., 1942). Source water is carried eastward in the West Wind Drift of the

North Pacific Gyre (Lynn and Simpson, 1987). This water forms a relatively cold, low

salinity current along the west coast of North America The principal equatorward flow is

above 1000 meter depth with the bulk of the average 11.9 Sv transported equatorward

occurring within 1000 km of the coast (Wooster and Reid, 1963). Numerous eddies and

irregularities in the flow as we!l as the existence of coastal countercurrents have been

observed (Wooster and Reid, 1963). Equatorward winds in the summer can cause

equatorward currents and strong up-."l1ing while a coastal, poleward countercurrent with

no upwelling can be present in the winter (Reid el al., 1958). Non-seasonal variations in

upwelling appear to be related to wind changes (Reid, 1960).

The California Current System (CCS) can be broken into four general currents the

California Current (CC), the California Countercurrent (CCC), the California

Undercurrent (CUC), and the Southern California Countercurrent (SCC) Since only the

first three are included in the area of this modeling study, the SCC will not be further

discuo-ed.

The equatorward CC has a core that is within 100-200 km of the coast and reaches

a depth of nearly 300 m (Chelton, 1984). The average current speeds are less than 25 cm

s-" (Reid afid Schwartzlose, 1962). Core speeds often in excess of 75 cm s-1 have been

observed (Brink etal., 1991)..
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The poleward CCC is observed inshore of the CC and is characterized by its

seasonal variability (Chelton, 1984; Hickey, 1979) The flow of the CCC is equatorward

from February through September and poleward from November through Febru, -y

(Hickey, 1979). When flowing poleward on the surface, it is called the Davidson Current

(Chelton, 1984). Observations north of Cape Mendocino show that the flow can be either

poleward or equatorward during the same month (Chetton el a!, 1988).

The CUC flows poleward over the continental shelf (Hickey, 1979; Reid, 1962)_

Its core has a mean velocity greater than 15 cm s-1 with instantaneous speeds of up to 40

cm s"1 (Hickey, 1979, Reid, 1962). The CUC is 20 - 70 km wide and vertically extends -

300 meters with its center 200 - 250 meters below the surface (Hickey, 1979, Reid, 1962).

The colder temperatures found near the coast and observations of the CCC below

200 m depth were originally attributed to a classical !wo-dimensional upwelling system

closely related to the winds (Smith, R. L., 1968). This simple one-celled circulation of

upwelling was later disputed by observations during CUE-I and CUE-2, where the

vertical distributions of temperature, chlorophyll and optical parameters contradicted the

simple two-dimensional theory (Huyer, 1983).

The CODE program in 1981-1982 was designed to study and identify those

dynamical processes which govern the wind-driven motion of water over the continental

shelf (Beardsley and Lentz, 1987) Kosro (1987) used the shipboard Doppler acoustic log

(DAL) to show that near-surface currents often deviated substantially from classical two-

dimensional wind-driven upwelling DAL results indicated a close association between the

complex temperature structures in satellite imagery and tie presence of vigorous current

structures including squirts, eddies, and countercurrent., (Kosro, 1987). The OPTOMA

program further showed the persistence of the eddy field and its potential for drawing the

cold waters offshore (Mooers and Robinson, 1984) The CTZ program was the next

3



major experiment designed to help understand the complex CCS A major portion of this

program was dedicated to resolving what caused the filaments (cold surface features)

found during CODE and OPTOMA (Brink and Cowles, 1991) Drifters showed core

speeds often in excess of 75 cm s-1 in the generally southward meandering jet during July

to December 1988 (Brink et al., 1991). When the winds were poleward and the Davidson

Current was present, there was little eddy activity and no coherent flow or filaments were

observed (Kosro et al., 1991).

CTZ was designed to study filaments. Yet in the EBC region many large-scale

eddies were present. The newest program, "Weakly Nonlinear Accelerated Research

Initiative", sponsored by the Office of Naval Research (ONR), is designed to try to

understand more about the eddies in the CCS. Of particular interest is the question of the

role of wind forcing in generating eddies in the CCS.

B. CLIMATOLOGICAL WINDS

The atmospheric circulation off the west coast of North America is dominated by

the North Pacific High, which varies seasonally in position and strength (Huyer, 1983). In

February the High is centered near 280 N, 130oW, while in August it migrates to its most

northward location of 380 N, 150oW (Huyer, 1983). Nelson (1977) showed that the

strongest equatorward wind stress migrates from -25°N in the winter to -38ON in the

summer. This shifting of the High causes the winds to split at --40ON near Cape

Mendocino during the winter. The northward winds blow around the eastern side of the

Aleutian Low, north of the cape, while southward winds blow around the North Pacific

High, south of the cape, In the summer, the winds are predominately southward on both

sides of the cape (Nelson, 1977).
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Smith (1968) showed that open ocean upwelling can occur if there is positive wind

stress curl away from the boundary of the coast. Bakun and Nelson (1991) found that the

large-scale wind stress curl in the CCS is predominately cyclonic near the coast and

anticyclonic offshore. As a result, Eknman convergence dominates near the coast, while

Ekman divergence dominates offshore. There is a transition zone located approximately

200 - 300 km off the coast between the cyclonic and anticyclonic curl which is associated

with the offshore maximum of alongshore wind stress (Bakun and Nelson, 1991).

There are two local maximums in the wind stress curl. The first i3 yearlong and

associated with the Southern California Bight. The second extends south from Cape

Mendocino to past Monterey Bay and occurs during the fall and winter (Bakun and

Nelson, 1991).

C. NUMERICAL MODEL STUDIES

Numerical models have been used to help unravel some of the mysteries

concerning the causes and behavior of the phenomena observed in the CCS They can

give the solution to complicated, non-linear problems that are intractable with standard

analytical methods (Allen, 1980).

Two-dimensional models, which ignored alongshore variability, were a first

attempt at using the computer to generate results that were reasonable when compared to

available observations. For example, the two-layered stratified models discussed by Allen

(1980) with a flat bottom produced a coastal jet in the upper layer and a countercurrent in

the lower layer. When a shelf and slope topography were added to the same model,

results showed that the countercurrent strength would be significantly reduced, consistent

with available observations.
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As computers have advanced in speed and power, three-dimensional models have

replaced the two-dimensional models and can be run with results obtained in a reasonable

amount of time. For example, for eastern boundary current regions, two-layer and

continuously stratified three-dimensional models have been used by Suginohara (1977) to

study the effects of alongshore variations in wind stress. The results have been shown to

be consistent with forced coastal trapped wave theories. The results also show a

pycnocline upwelling near the coast and the formation of fronts, consistent with available

upwelling observations (e.g., Curtin, 1979).

None of the models mentioned above simulated eddies, jets or falaments.

Haidvogel et al. (1991) was able to produce these results but used no wind fibrcing.

Batteen el at. (1989) had the first eastern boundary current model to simulate eddies and

jets with steady wind forcing, followed by McCreary et ai. (1991), who used the same

type of wind forcing.

In this study, the model used by Batteen el a!. (1989) is extended to include

seasonal rather than steady wind forcing. The seasonal winds are then averaged into

different components to understand the role each component plays in the generation of

eddies, jets and filaments.
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III. MODEL DESCRIPTION

The numerical model used in this research was developed by Haney (1974,1985)

for a closed basin, and modified by Barteen (1989) and Batteen et al. (1989) for use in

limited area eastern boundary current (EBC) regions with open borders on the northern,

western and southern borders. It is explained in detail in Batteen el a[ (1989) and will be

summarized below.

A. MODEL EQUATIONS

The model is a multi-level, primitive equation (PE) model, and uses the

hydrostatic, rigid lid, $3-plane and Boussinesq approximations. The governing equations

are the following:

a. Momentum Equations:
du_-1_, e fp , 2).-A,~+.-7.dudt+ ft -x r 'A +K £-+- 5d(u) (3.1)

di p. ex

:2 = 0--+p'+ fu - A.V F,+6(v) (3.2)
dt p. ey

b. Continuity Equation:

-+ (3.3)

c. Vertically Integrated Hydrostatic Equation:
o I Iorgo1(

d. Equation of State:

p=po(l - a(T- To)) (3.5)
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e. Thermodynamic Equation:
dT 4  O2T

=-A VT+KHT -2T-•+Qi(T) (36)
d-t H z + Q, .

In the above equations, t is time, (xy,z) is a right-handed Cartesian coordinate system

with x pointing eastward toward shore, y pointing northward alongshore, and z upward.

The velocity components are (u,v,w), respectively. T is temperature, p is density and p' is

the departure from the vertically averaged pressure. ý is a dummy variable in equations

(3.3) and (3.4). The density function is assumed to be a function of temperature only in

equation (3.5). This is consistent with the region being modeled (Lynn et al., 1982).

Salinity may be a good tracer for water masses in the CCS (Huyer and Kosro, 1987);

however it is not essential for a zero-order description since there are no major sources or

sinks of salinity in this region of the CCS. In equation (3.6), Q, = Z/ SpoC" is the

heating due to solar radiation, where

S =So(Re.' +(l-R)e4• ). (3.7)

S, is the downward flux of the solar radiation at the surface, R =.62 is the fraction of

solar radiation absorbed in the upper few meters (z= 1.5 m) and (1- R) =.38 is the

fraction that penetrates to somewhat deeper levels (z2 = 20 m) as given by Paulson and

Simpson (1977). The vertical turbulent mixing of heat and momentum by a dynamic

adjustment mechanism is represented by the terms 8d (u), Jd(v) and 8d(T). This

adjustment, a generalization of the convective adjustment mechanism, is based on the

assumption of a critical Richardson number, and it serves to maintain dynamic stability in

the water column (Adamec et al., 1981).
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The boundary conditions at the top (z O)of the model are.

K. z- l'p, (3-8a)

K. = r'/p (3.8b)

Kf 0 = -Q8 (3.8c)

w=0 (3 8d)

and at the bottom (z = - H) they are

K -=CD(c +v2±)1 (ucosy-vsin y) (3.9a)

K•,• = CD (u: + v: )•~ (vcosy - u sin y) (39b)

KH =0 (3.9c)

w =0. (3.9d)

T' and e are the cross-shore and alongshore components of the surface stress in

equations (3.8a) and (3-8b). In (3.8c), QB is the net upward flux of longwave radiation,

sensible and latent heat across the sea surface. y = 100 is a geostrophic inflow angle in

equations (2.9a) and (2.9b) (Weatherly, G L., 1972) Table I provides constants used in

this study as well as other symbols in the model equations.
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B. DOMAIN SIZE AND RESOLUTION

The domain of the model is a rectangular region extending from 35°N to 45°N

and 60 longitude off the west coast of the United States. This region extends

approximately 500 km offshore and it spans over 1000 km in the alongshore direction.

Point Conception marks the southern boundary of the study while Cape Mendocino is

located in the middle of the study area. The horizontal resolution of the model is 8 km in

the cross-shore direction and 17.5 km in the alongshore direction. This resolution should

allow realistic spatial resolution of mesoscale features in the CCS, which have typical

wavelengths of the order of 100 km (Breaker and Mooers, 1986). Variations in the

coastline and ocean depth are omitted in this process-oriented study to focus on the role of

wind forcing in the generation of eddies and filaments.

C. FINITE DIFFERENCE SCHEME AND TIM STEPPING

A space staggered B-scheme which has u and v defined at one set of grid-points

and T, p, and p at another (Arakawa and Lamb, 1977, Batteen and Han, 1981) is used in

the horizontal. There are 10 layers in the vertical, separated by constant z-levels at depths

of 13, 46, 98, 182, 316, 529, 870, 1416, 2283 and 3656 m The time stepping used

consists of a Matsuno time step followed by 10 leapfrog time steps and is continuously

repeated throughout the model run.

D. HEAT AND MOMENTUM DIFFUSION

Biharmonic lateral momentum and heat diffusion with the coefficients listed in

Table I are used in the model to allow the generation of mesoscale eddies. Laplacian
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lateral heat diffusion is not used since it can diminish the baroclinic signal associated with

mesoscale processes (Huiiand and Batteen, 1986).

E. SURFACE THERMAL FORCING

The surface thermal forcing was highly simplified in this model in order to focus on

wind's role in generating thermal variability. The solar radiation at the sea surface, So,

was specified to be the mean summer CCS value from Nelson and Husby (1983). The

mean summer CCS value was used even though the study used climatological winds for all

seasons because during the summer upwelling season there will be a net heat gain due to

the cold upwelled water. QB, the net longwave radiation was computed during model

experiments from standard bulk formulas using the summer CCS mean value of

alongshore wind, cloud cover, air temperature, relative humidity, and model-predicted sea

surface temperature (Haney el al, 1978). The initial sea-surface temperature was chosen

so that the total heat flux across the sea surface, S. - QB, equals zero. The only surface

heat flux forcing was developed in QB as a result of wind-forced fluctuations in the sea

surface temperature. A more detailed discussion of this formulation can be found in

Batteen et al. (1989) and Haney (1985).

F. HORIZONTAL BOUNDARY CONDITIONS

The California coastline, the eastern boundary, is modeled as a straight vertical

wall. A no-slip condition is imposed on the tangential velocity.

The other three boundaries are open using a modified version of the radiation

boundary conditions of Camerlengo and O'Brien (1980). Forcing to the boundaries

caused unrealistic surface currents with no undercurrent in cases where the wind does not

have an alongshore component. To remedy this problem, we impose a band where there
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is no wind forcing (McCreary, 1981; Batteen el al., 1989; McCreary el al., 1987). The

bands of no wind forcing are located approximately 100 km from the northern and

southern boundaries. This allows for the propagation of coastal Kelvin waves. A surface-

trapped coastal jet and a relatively realistic undercurrent are established by the alongshore

pressure gradient field generated by the Kelvin waves (Batteen et a., 1989).

G. INITIAL CONDITIONS

An exponential temperature profile with a vertical length scale of h = 450 m was

the initial mean stratification. The form was:

T = Ts + VTet, (3.10)

where TB = 20C is the temperature at the bottom layer and AT = 130C is the increase in

temperature between the bottom and surface layer. This profile is considered to be

climatologically representative of the CCS (Blumberg and Mellor, 1987).

H. WIND DATA DESCRIPTION

The winds used to force the model are from the European Centre for Medium

Range Weather Forecasts (ECMWF) (Trenberth el aL, 1990) and were provided by the

National Center for Atmospheric Research (NCAR). World-wide mean monthly wind

velocities were provided at 2.5 degree spacing for the years 1980 to 1989. Two

climatologies derived from 80 months and 120 months of data were also provided. Since

a comparison of the two climatologies showed no apparent contrast in our area of interest,

the 120-month climotology was chosen to be the representative winds for this study. The

data was linearly interpolated in both time and space to provide daily forcing at the

required grid points. The interpolated values are separated by approximately 8 km in the
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cross-shore direction and 17.5 km in the along-shore direction, consistent with the model

horizontal grid resolution. All the seasonal experiments used this 120-month climatolgical

wind as th• base for which the averaging (explained below) was done.

L EXPERIMENTAL DESIGN

The first experiment is forced with a steady -830 cm s"1 southward wind. The

subsequent three time-varying cases broke the wind fields into different components to

identify the importance each of these components played in the development of eddies and

filaments. For the second and third experiments, the cross-shore component of the wind

field is set to zero. The alongshore component in the second and third experiment is then

averaged and applied to the model grid in the following manner:

"* varying in time but averaged spatially over the entire domain (second experiment);

and

"* varying in time and in the alongshore direction but averaged in the cross-shore

direction (third experiment).

In the final experiment, the full climatological wind field is used All four experiments are

run for 360 days.

J. ENERGY ANALYSIS TECHNIQUE

The energy technique used in Batteen and Rutherford (1990) and Batteen el al.

(1992) will be used to analyze the generation and stability of the California Current

System, eddies and filaments. The following is a summary of the Batteen el aL (1992)

description of this technique.
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To gain an understanding of the energy transfers in the unstable flow, an energy

analysis based on that of Han (1975) and Semtner and Mintz (1977) is made The energy

calculations with Semtner and Mintz (1977) notation is used in the energy calculations:

( ) time average

( ) time deviation

(') horizontal space average

( ) horizontal space deviation

The kinetic energy is calculated by:
U_ +V',2= (3.11)

2

The time mean and time eddy kinetic energy are calculated, after reaching a quasi-steady

state, by:
12 (3.12)

KO r2 (3.13)
2

Available potential energy (P) is:

P= " c (T')(- ' (3.14)

This determines when a quasi-steady state is reached in order to collect statistics. The

temporal mean and eddy available potential energy are then calculated by:

S=)( )(3.15)
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P -g[ T()(-)- (316)

Following Semtner and Mintz (1977), transfers between energy types are defined as:

IR T~j(3,17)

{P' K') =ag[TVj (3 18)

K') V (3.19)

{P *I) = ag * '* CV(3.20)

Vertical velocity and advection terms calculated by the model are not stored Vertical

velocity and advection terms are recalculated in the same manner as in the model using

stored values of u, v and T as the input data. The recalculated energy transfers are

consistent with the initial calculations of vertical velocity and advection terms in the

model.

The energy transfer analysis is used to argue for the instability mechanism which

leads to the initial eddy generation by studying the quasi-steady energetic state prior to

eddy generation.
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Table 3.1. VALUES OF CONSTANTS USED IN THE MODEL

VALUE DEFINITION

C 0.958 Cal Xi-t (,•-1 specific heal of sea water

CD 1.225 x 10,3 bottom drag coefficient

TO 278.20K constant reference temperature

Pa ) 23 x 0 3 PincM"3  densit' of air

PO 1.0276 g cm"3 density of sea water at To

Q 2.01 x 104 (0K)MI thermal expansion coefficient

9 10 number of levels in %ertical

AX 7.6 x 105 cm cross-shore grid spacing

AY 17.5 x 1o6 cm alongshore grid spacing

D 4.5 x IO5 CM total ocean depth

At Boos time step

fo 093 x 1o-4: 1 mean Conolis parameter

9 980 CM mI acceleration of grayiy

AM 2 x 101 7 cm4 Cl biharmonic momentum diffusion coefficient

A~l 2 x 1017 Cn4 & I biharmonic heat diffusion coefficient

KM 0.5 CM2 j- vertical eddy viscosity

0H 0,5 Cn2 el vertical eddy conductiviv
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IV. RESULTS OF WIND FORCING EXPERIMENTS

Experiment I studies the effects of steady, equatorward (upwefling-favorable)

winds in the CCS. Experiments 2 through 4 investigate the effeLLs of seasonally varying

winds in the same region, using climatological monthly values that have been interpolated

to daily values. Experiment 2 uses temporally varying, spatially averaged winds, while

Experiment 3 uses winds with temporal variation and alongshore variability. In

Experiment 4 the full climatological, seasonally varying wind field is used.

A. EXPERIMENT I

In Experiment I the model was forced with a steady -830 cm s-1 equatorward

wind. This wind forcing of 1 dyne cm-2 is the summer (June-August) average for the

modeled area (Batteen ca al., 1989). Inertial oscillations of near-surface ocean currents

developed initially, as in Batteen el al. (1991). After a few days the oscillations were

damped, leaving quasi-steady offshore Ekman transport (not shown). By day 20 an

equatorward coastal jet developed with speeds of -15 cm s-1 (Fig. 4.1a,c) Colder

surface temperatures also appeared near the coast (Fig. 4. 1b). A poleward undercurrent is

also discernible at 182 m depth (Fig. 4.ld). The surface current flowed at -25 cm s-l, and

extended -35 km offshore (Fig. 4.1c), while the undercurrent, centered along the coast,

had weaker velocities of-5 cm s- I (Fig. 4.1 d).

Plots of the zonal velocity (Figs. 4.2a, b) show that eddies begin to form around

days 60 and 70 as evidenced by perturbations in the zonal velocity fields. (Since

meridional velocity plots tend to be dominated by the predominately meridional currents,

perturbations are more clearly seen in zonal rather than meridional velocity plots.) The

isotherms also show meanderings in the same region where the eddies are generated
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(Figs. 4.2c, d). As expected, eddies first formed in the poleward end of the region, as in

the P-plane experiment of Batteen et al. (1989). The vertical cross-section of meridicnal

velocity at day 90 (Fig. 4.3) shows that the surface equatorward current has its core at

-80 m depth with a speed of -25 cm sl, while the undercurrent develops below a depth

of -240 m within -25 km of the coast.

Both baroclinic and barotropic transfers (equations 3,18 and 3.19, respectively)

can contribute to the formation of eddies. Baroclinic instability draws its energy from the

vertical shear in the mean flow while barotropic instability receives energy from the

horizontal shear (Haltiner and Williams, 1980; Batteen et al. 1989). Figure 4 4 shows that

although both baroclinic (Fig. 4.4a) and barotropic (Fig. 4.4b) instabilities play a key role

in the generation of eddies, barotropic instability is the dominant generation mechanism.

Plots of the surface velocity vectors superimposed on the isotherms (Fig 4.5a-d)and the

meridional velocity contours (Fig. 4.6a-d) at 90 day intervals show how the meandering

current continues to grow in strength and to spin off isolated eddies. This strong

meandering current can produce eddies that have wavelengths up to - 200 km and that

can propagate at least - 200 km offshore (Figs. 4.5 and 4.6).

Although these results show a meandering current and eddies, it is very unlikely

that there will be steady strong equatorward (upwelling favorable) winds for 360 days,

since there are many periods of poleward winds and also wind relaxations in the CCS

region. Therefore, three more experiments with a time varying wind, were conducted in

order to better understand what critical unsteady wind forcing elements are needed for the

formation and maintenance of currents and eddies.
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B. EXPERIMENT 2

The second experiment utilized the alongshore-component of the temporally

averaged ECMWF winds. The seasonal cycle of this wind field is plotted in Figs- 4.7 and

4.8. At the beginning of the year, the wind forcing was very weak, and the winds

remained weak until day 135. From days 135 to 225, the wind was equatorward and

continued to grow in strength. The wind then decreased in strength until it was nearly

zero again at day 360.

The model simulation results show an equatorward coastal jet and colder surface

temperatures near the coast by day 180 (Fig. 4.9b). The surface current flowed at -10 cm

s-1, and extended -25 km offshore, while the undercurrent had weaker velocities of -1.5

cm s-1 and was centered along the coast at -120 m depth (Fig. 4.10).

The isotherms show meanderings in the same region where the eddies are

generated (Figs. 4.9 and 4.10). Again the eddies first formed in the poleward end of the

region, as expected. Fig. 4.12 shows that both baroclinic and barotropic instabilities

contribute to the generation of eddies, with the barotropic instability being the dominant

mechanism. The plots of the surface velocity vectors superimposed on the isotherms at

selected days between 130 and 270 show how the meandering current continues to grow

in strength and to spin off isolated eddies (Figs. 4.9 and 4.10). As expected, this

meandering current weakens and dissipates as the seasonal cycle of the temporal wind

weakens.

With this non-spatially varying seasonal cycle, currents and eddies are generated

much later than with the ideal upwelling favorable winds of the first experiment. The

major portion of activity happened between day 135 and day 290 and only showed very
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weak upwelling and little eddy activity (Figs. 49-4.10). The eddies also only propagated

to - 100 km offshore.

C. EXPERIMENT 3

The third experiment uses the alongshore component of the time-dependent wind

forcing with spatial variability in latitude The wind forcing is divergent at the beginning of

the year with poleward winds north of 400 N latitude and equatorward winds south of 400

N latitude. The wind stress shifts to being equatorward everywhere by day 135,

intensifying from days 135 to 225, and then splits again by day 315 (Figs. 4ý 13 and 4.14).

The ocean response is evident by day 70 when an equatorward coastal jet forms

(not shown). Eddies form by days 240 and 260 (Figs. 4.15a,b). Meanders in the

isotherms in the areas of these eddies are also evident (Figs. 4.15c,d). The cross-section

of the meridional velocity at day 260 (Fig. 4,16) shows an equatorward surface current

with speeds of -35 cm s"1 and a poleward undercurrent with its core located 40 km

offshore and at a depth of 350 m.

In this experiment, there is a competition between the O-plane effect, which will

cause eddies to form in the poleward end of the domain, and the continuous and stronger

equatorward wind forcing in the southern portion of the domain. This causes eddies to

form throughout the region so that by day 300 the eddies encompass the area from the

northern boundary to the southern boundary of the domain (Figs. 4.17a,c). Day 360

shows the strong meandering current with large eddies imbedded in it (Figs. 4.17b,d).

Figures 4.18a,b show that while both baroclinic and barotropic instabilities are

eddy generating mechanisms in the poleward portion of the domain, it is primarily the

barotropic instability that contributes to the generation of eddies in the southern portion of

the domain where the wind is predominately equatorward. The wind forcing in this
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experiment produced larger eddies (that propagate at least - 150 km from shore) and eddy

velocities than were seen in the previous experiment, which is more consistent with

available observations.

D. EXPERIMENT 4

The final experiment uses fill climatological wind forcing (Figs. 4.19 and 4.20).

Again the divergence in the winds at 400 N is evident in the beginning of the year. By day

135, the winds over the entire domain have an equatorward component and by day 225

the winds are predominately equatorward everywhere and strongest in magnitude After

day 225 the winds become less intense and by day 360, north of 400 N the wind becomes

poleward again.

As in the previous cases, inertia] oscillations of near-surface ocean currents

developed initially. After a few days these observations were damped, leaving quasi-

steady offshore Ekman transport (not shown)- By day 20 an equatorward coastal jet

developed(not shown). At day 110 the surface current flowed at -40 cm s-1, and

extended -35 km offshore, while a weak undercurrent was evident (Fig. 4.21). The

meridional velocity cross-section at day 180 (Fig. 4.22) shows a strong equatorward

surface jet centered -50 km offshore with speeds of -60 cm s-1. The poleward

undercurrent is located at -360 m depth and -40 km offshore.

Plots of the zonal velocity (Fig. 4.23d) show that eddies begin to form around day

260 as evidenced by perturbations in the zonal velocity fields. As expected, the isotherms

also show meanderings in the same region where the eddies are generated (Fig 4.23c).

The eddies again formed initially in the poleward end of the region.

Figure 4.24 shows that, although both baroclinic (Fig. 4.24a) and barotropic (Fig.

4.24b) instabilities play a key role in the generation of eddies, barotropic instability is the
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dominant generation mechanism. Days 300 to 360 (Figs 4.254.27) show the current

becoming stronger with the eddies continuing to grow and to separate from the coast

The speeds of the currents and eddies reach - 65-85 cm s-1 with wavelengths of - 300 kin

and can propagate to - 350 km offshore. This case gives results that are more consistent

with available observations than was obtained in any of the previous cases However, the

speed and depth of the undercurrent are still not quite in agreement with observations
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Temp and velocity vector at model day 20 0
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Distance all shore (kmn)

Figure 4.1a) Experiment I Day 20: Surface velocity vectors superimposed on isotherms. The contour
interval for the isotherms is 0.50 C. The temperature decreases toward the coast.
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Figure 4.1 b) Experiment 1: Day 20 Temperatures. The contour interval for the isotherms is 1.00 C.
The temperature decreases toward the coasL
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Figure 4.1 c) Experiment 1: Day 20 Meridional velocities. The contour interval is 10 cm s-1. The dashed
lines indicate southward velocities, The equatorward velocity increases to - 25 cm s-1 near the coast.
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Figure 4.1 d) Experiment 1: Day 20 Meridional velocities at 182m. The contour interval is 3 cm s-1.

The dashed lines indicate southward velocities. The poleward undercurrent is seen at the coast.
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Figure 4.2 a) Experiment 1: Surface Zonal velocities at day 60. The contour interval is 10 cm s-. The
dashed lines indicate westward velocities. Closed contours show the locations of eddies.
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Figure 4.2 b) Experiment 1: Surface Zonal velocities at day 70. The contour intenral is 10cm s-1. The
dashed lines indicate westward velocities. Closed contours show the locations of eddies.
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Figure 4.2 c) Experiment 1: Surface temperatures at day 60. The contour interval is 10 C. The
temperature decreases toward the coast.
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Figure 4.2 d) Experiment 1: Surface temperatures at day 70. The contour interval is 10 C. The
temperature decreases toward the coast.
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Ud~y potmntiat energy to eddy kinetic energy Reen k-lnetic enerity to eddy kinetic energy
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Figure 4.4 Experiment 1 Transfers of energy (as defined in equations 3.18 and 3.19) from: a) P toK

(eddy available to eddy kinetic energy), and b) K to K (mean to eddy kinetic energy). Transfers of
energy are averaged over the days 50-70 and summed over the upper five layers. The contour intervals
are 0.00005 ergs cm"3 s" 1 in a) and 50 ergs cm"3 s-1 in b).

32



Temp end velocity vector .t model day 00 0
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Figure 4.5a) Experiment 1: Surface velocity vectors superimposed on temperatures at day 90. The contour
interval is Q0.5 C. The temperature decreases toward the coast.
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Temp and velocity vector at model day 1800
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Figure 4.5 b) Experiment 1: Surface velocity vectors superimposed on temperatures at day 180. The

contour interval is 0.50 C. The temperature decreases toward the coast.
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"Temp and velocity vector at model day 270.0
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Figure 4.5 c) Experiment 1: Surface velocity vectors superimposed on temperatures at day 270. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Figure 4.5 d)Expcriment 1: Surface velocity vectors superimposed on temperatures at day 360. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Figure 4.6 b ) Experiment 1: Surface meridional velocities at day 180. The contour interval is 10 cm s-1

The dashed lines indicate southward velocities. Closed contours show the locations of eddies.
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Figure 4.6 d) Experiment 1: Surface meridional velocities at day 360. The contour interval is 10 cm s-1.

The dashed lines indicate southward velocities. Closed contours show the locations of eddies.
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Figure 4.7a) Experiment 2: Wind forcing in m s- at day 45.
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Figure 4.7 b) Experiment 2: Wind forcing in m s-! at day 90.
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Figure 4.7 c) Experiment 2: Wind forcing in m sV1 at day 135.

43



Y-TmNDS 1 00

17.0

6i . I IIIIIIII I I I IIIII
17.0 11111111III 11111111

1111111III II IIIII I

Figure 4.7 d) Experiment 2: Wind forcing in m sIat day 180,
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Y-WTNDS 25

Figure 4.8 a) Experiment 2I Wijd forcing in m s-I at day 225.
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Figure 4.8 b) Experiment 2: Wind forcing in m s" at day 270.
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Figure 4.8 d) Experiment 2: Wind forcing in m s-1 at day 360.
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7emp and velocity vector at model day 130.0
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Figure 4.9 a) Experiment 2: Velocity vectors superimposed on surface temperatures at day 130. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp end velocity vector at mnodel day 180 0
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Figure 4.9 b) Experiment 2: Velocity vectors superimposed on surface temperatures at day 180. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp end velociLy vector at model day 200 0
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Figure 4.9 c) Experiment 2: Velocity vectors superimposed on surface lemperariires at day 200. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp end velocity vector at model day 210 0
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Figure 4.9 d) Experiment 2: Velocity vectors superimposed on surface temperatures at day 210. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp and velocity vector at model day 250 0
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Figure 4.10 a) Experiment 2: Velocity vectors superimposed on surface temperatures at day 250. The

contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp and velocity vector at mode) day 270 0
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Figure 4.10 b) Experiment 2: Velocity vectors superimposed on surface temperatures at day 270. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp and veloclty vector at model day 280.0
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Figure 4.10 c) Experiment 2: Velocity vectors superimposed on surface temperatures at day 280. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Temp and velocity vector at model day 290.0
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Figure 4.10 d) Experiment 2: Velocity vectors superimposed on surface temperatures at day 290. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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North-South velocity at model day 210.0
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Figure 4.11 Experiment 2: Cross-section at 400 N latitude of meridional velocities at day 210. The
contour interval is 1.1 cm s- 1. The dashed lines indicate southward velocities and show the surface
equatorward current. The solid lines indicate nc:*thward flow and show the poleward undercurrent.
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tdd, potential teril to *ddY kl.ette Geiri•J th.v kinetfe enerky to eady kItletf energ7

everiee over Model dEa 300.0 to 3*0.0 average over model day' 300 0 to 3" 0
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Figure 4,12 Experiment 2 Transfers of energy (as defined in equations 3.18 and 3.19) from: a) P to K

(eddy available to eddy kinetic energy), and b) K to K (mean to cddJ kinetic energy) Transfers of
energy are averaged over the days 3(90-320 and summed over the upper five layers. The contour intervals
are 0.0000025 ergs cm"3 s 1 in a) and 10 ergs cm"3 s-1 in b).
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Figure 4.13a) Experiment 3: Wind forcing in m s"] at day 45.
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Figure 4.13 b) Experiment 3: Wind forcing in m S' at day 90.
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FigUre 4.13 c) Experiment 3: Wind forcing in m s- at day 135.
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Figure 4,13 d) Experiment 3: Wind forcing in m s-Iat day 180,
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Figure 4.14 a) Experiment 3: Wind forcing in m S-1 at day 225,
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Y-WINDS 315 0
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Figure 4.14 c) Experiment 3: Wind forcing in m s- at day 315.
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Y-WIIDS 360 0
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Figure 4.14 d) Experiment 3: Wind forcing in m s- at day 360.
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Figure 4.15 a) Experiment 3: Surface Zonal velocities at day 240. The contour interval is 10 cm s-1 . The
dashed lines indicate westward velocities. Closed contours show the locations of eddies.
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Figure 4.15 c) Experiment 3: Surface temperatures at day 240. The contour interval is 10 C. The
temperature decreases toward the coast.
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Figure 4.15 d) Experiment 3: Surface temperatures at day 260. The contour interval is 10 C. The
temperature decreases toward the coast.
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Porth-South velocity at model day 260.0e.d- I I -
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Figure 4.16 Experiment 3: Cross-section at 400 N latitude of meridional velocities at day 260. The
contour interval is 1.1 cm s1. The dashed linis indicate southward velocities and show the surface
equatorward current. The solid, lines indicate northward flow and show the poleward undercurrent,
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Temp and veloclty vector at model day 3000
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Figure 4.17 a) Expcriment 3. Surface velocit, vec'lrs supvrimrposwd on te pcratwres at da 3(RX) The
contour inter\ a is 0.5o C The temperat ure d&creaws to-Aard the coast.



Tetrp end velocity vector at model day 360 0
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Figure 4.17 b) Experiment 3: SUrfje \7ckloty vectors superimposed on tempcra(Tucs at &iv 3001. The
contour interval is 050l C. The temperature decreases toward the coast.
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Figure 4,17 c) Experiment 3: Surface temperatures at day 300. The contour interval is 0L.5( C. The
temperature decreases tow ard the coast.
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Figure 4.17 d) Experiment 3: Surface temperatures at day 360. The contour interval is 0.50) C, The

temperature decreases toward the coast.
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eddMy otential energy to eddy inettle energy Ueen kne•ic energy to eddy kinetie energy
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Figure 4.18 Experiment 3 Transfers of energy (as defined in equations 3.18 and 3.19) from: a) P to K

(eddy available to eddy kinetic energy), and b) K to K (mean to eddy kinetic encrgy). Transfers of
energy are averaged over the days 280-310 and summed over the upper fivc laycrs, The contour intervals
are 0.00025 ergs cm"3 sl in a) and 1000 ergs cm" 3 s"1 in b).
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Figure 4.19a) Experiment 4: Wind forcing in m S1l at day 45.
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Figure 4.19 b) Experiment 4, Wind forcing in m s'l at day 90.
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WIND 135 0
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Figure 4.19 c) Experiment 4: Wind forcing in mn at day 135
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Figure 4.19 d) Experiment 4: Wind forcing in m s' at day 180.

80



I"ND 225 0
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Figure 4.20 a) Experiment 4: Wind forcing in m s- at day 225.
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Figure 4.20 b) Experiment 4: Wind forcing in m s- at day 270.
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WIND 315 0
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Figure 4.20 c) Experiment 4: Wind forcing in m s- at day 315.
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Figure 4.20 d) Experiment 4: Wind forcing in m si at day 360.
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Temp and velocity vector at model day 110 0
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Figure 4.21 a) Experiment 4: Surface velocity vectors superimposed on temperatures at day 1110. Thecontour interval is 0.50 C. The temperature decreases toward the coast.
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North-South velocity at model day t11.O

-.. -5

-.... - -- -. -. .. - 2- --4 ' 4 ' "

L= . , . _ , ,,/,
-3-I .4 - l1

E -,.. . ".4If ,

- 143-/

Dislence off shore (km)

Figure 4.21 b) Experiment 4: Cross-section at 400 N latitude of meridional velocities at day 110. The

contour interval is 1.1 cm s- 1. The dashed lines indicate southward velocities and show the surface
equatorward current. The solid lines indicate northward flow and show the poleward undercurrent.
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North-South velocity at model day 1800
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Figure 4.22 Experiment 4: Cross-section at 400 N latitude of meridional velocities at day 180. The
contour interval is 1.1 cm s- 1 . -The dashed lines indicate southward velocities and show the surface
equatorward current. The solid lines indicate northward flow and show the poleward undercurrent.
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Temlp and velocity vector at mnodel day 260 0
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Figure 4.23 b) Experiment 4: Day 260 Meridional velocities. The contour interval is 10 cm A:. The
dashed lines indicate southward velocities. The equatorward velocity increases to -35 cm s"1 near the
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Figure 4.23 c) Experiment 4: Surface temperatures at day 260. The contour interval is 10 C. The

temperature decreases toward the coast.
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Figure 4.23 d) Experiment 4: Su~rface Zonal velocities at day 260. The contour interval is 10 cm s"1 . The
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Figure 4.24 Experiment 4 Transfers of energy (as defined in equations 3.18 and 3.19) from: a) P' to K'

(eddy available to eddy kinetic energy), and b) K to K' (mean to eddy kinetic energy). Transfers of
energy are averaged over the days 230-250 and summed over the upper five layers. The contour intervals
are 0.0005 ergs cm" 3 s' in a) and 2000 ergs cm"3 s"1 in b).
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Figure 4.25 a) Experiment 4: Surface velocity vectors superimposed on temperatures at day 300. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Figure 4.25 c) Experiment 4: Surface temperatures at day 300. The contour interval is 10 C. The
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Figure 4.26 c) Experiment 4: Surface temperatures at day 340 The contour interval is 10 C. The
temperature decreases toward the coast.
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V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

In all four cases, currents and eddies were generated which shows the significant

role wind forcing plays in the generation of these features- Table 5 1 shows a summary

comparing the model results with available observations. The results of Experiment I are

fair except for the weak surface current and undercurrent. Though Experiment I shows

mostly reasonable results compared with observations, it is not likely that there would be

360 days of strong equatorward (upwelling favorable) winds Experiment 2 showed the

least reasonable results compared with observations. The coastal jet and undercurrent

were much weaker and smaller than observations in Experiment 2 In all four

experiments, the undercurrent was wider than seen in observations, A possible reason the

undercurrent is wider than seen in observations may be due to not having topography

representing the continental shelf in the model. Experiment 3 showed reasonable results

with the exception of a very wide undercurrent and small eddy velocities The results that

were closest to observations were from Experiment 4. With the full climatological winds,

the model was able to produce a coastal jet and eddy velocities of 85 cm s-1. The

conclusion obtained from the results of the four experiments is that both temporal and

spatial variability in wind forcing in eastern boundary current regions are critical elements

in the formation and maintenance of currents and eddies.

B. RECOMMENDATIONS

Future studies should look at the role of inter-annual variability in the wind

forcing. By allowing the model to run for ten years (the 1980-1989 data set is available),

it may be possible to detect what roles anomalous years such as El Nino have on the
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currents and eddies in the CCS. Longer model simulations would also help to determine

the life span of the larger eddies.

Experiments to include the topography and an irregular coastline to study the role

of these features in the maintenance of currents and eddies also may make it possible to

obtain a more reasonable undercurrent. Nevertheless, since both currents and eddies have

been generated and maintained in these wind forcing experiments, we must conclude that

wind forcing is a critical element in the formation and maintenance of these features in the

CCS.
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Table 5.1 INSTANTANEOUS COMPARISON OF EXPERIMENTS (EXP) WITH OBSERVATIONS
(OBS.) OF THE CCS.

Obs Exp. Exp. Exp. Exp.
1 2 3 4

A. Maximum coastal jet velocity (cm s~-) 30-100 (1,2,3,4) 25 5 35 85

B, Offshore location of coastal jet (km) 25-35 (2.3) 25-35 10-15 25-35 30-60

C. Offshore extent of coastal jet (kin) >40 (1,2,3) 100 20 40 100

D. Depth of inshore coastal jet (m) 90-150 (2.3) 80 60 80 180

E. Maximum undercurrent velocity (cm s-l) 5-15 (2,3) 5 1.5 5 5

F Offshore location of undercurrent axis (kn) 10-40 (2,3) 25 20 40 40

G. Maximum width of undercurrent (kin) 10-20 (2,3) 20 25 80 40

H. Depth of undercurrent axis (m) 200-300(2) 280 100 350 360

I. Maximum zonal eddy diameter (km) 10->100 (2,5,6,7) 145 40 120 130

J. Maximum zonal eddy velocity (cm s'l) 50-100 (1,2,3,4.6,7) 25 15 35 85

References: (1) Kosro and Huyer (1986)
(2) Huyer and Kosro (1987)
(3) Kosro (1987)
(4) Davis (1985)
(5) Mooers and Robinson (1984)
(6) Brink and Cowles (1991)
(7) Brink el al. (1991)
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